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ABSTRACT

The Eshelby-type problem of an arbitrary-shape polyhedral inclusion embedded in an
infinite homogeneous isotropic elastic material is analytically solved using a simplified
strain gradient elasticity theory (SSGET) that contains a material length scale para-
meter. The Eshelby tensor for a polyhedral inclusion of arbitrary shape is obtained in a
general analytical form in terms of three potential functions, two of which are the same
as the ones involved in the counterpart Eshelby tensor based on classical elasticity.
These potential functions, as volume integrals over the polyhedral inclusion, are
evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes, with
each duplex and the associated local coordinate system constructed using a procedure
similar to that employed by Rodin (1996. J. Mech. Phys. Solids 44, 1977-1995). Each of
the three volume integrals is first transformed to a surface integral by applying the
divergence theorem, which is then transformed to a contour (line) integral based on
Stokes’ theorem and using an inverse approach different from those adopted in the
existing studies based on classical elasticity. The newly derived SSGET-based Eshelby
tensor is separated into a classical part and a gradient part. The former contains
Poisson’s ratio only, while the latter includes the material length scale parameter
additionally, thereby enabling the interpretation of the inclusion size effect. This SSGET-
based Eshelby tensor reduces to that based on classical elasticity when the strain
gradient effect is not considered. For homogenization applications, the volume average
of the new Eshelby tensor over the polyhedral inclusion is also provided in a general
form. To illustrate the newly obtained Eshelby tensor and its volume average, three
types of polyhedral inclusions - cubic, octahedral and tetrakaidecahedral - are
quantitatively studied by directly using the general formulas derived. The numerical
results show that the components of the SSGET-based Eshelby tensor for each of the
three inclusion shapes vary with both the position and the inclusion size, while their
counterparts based on classical elasticity only change with the position. It is found that
when the inclusion is small, the contribution of the gradient part is significantly large
and should not be neglected. It is also observed that the components of the averaged
Eshelby tensor based on the SSGET change with the inclusion size: the smaller the
inclusion, the smaller the components. When the inclusion size becomes sufficiently
large, these components are seen to approach (from below) the values of their classical
elasticity-based counterparts, which are constants independent of the inclusion size.
© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Eshelby’s (1957, 1959) solution for the problem of an infinite homogeneous isotropic elastic material containing an
ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic
Eshelby ellipsoidal inclusion problem was obtained by Michelitsch et al. (2003), which reduces to the Eshelby solution in
the static limiting case. Both of these solutions are based on classical elasticity. Recently, the Eshelby ellipsoidal inclusion
problem was solved by Gao and Ma (2010b) using a simplified strain gradient elasticity theory, which recovers Eshelby’s
(1957, 1959) solution when the strain gradient effect is not considered.

A remarkable property of Eshelby’s (1957) solution is that the Eshelby tensor, which is a fourth-order strain
transformation tensor directly linking the induced strain to the prescribed uniform eigenstrain, is constant inside the
inclusion. However, this property is true only for ellipsoidal inclusions (and when classical elasticity is used), which is
known as the Eshelby conjecture (e.g., Eshelby, 1961; Rodin, 1996; Markenscoff, 1998a,b; Lubarda and Markenscoff, 1998;
Liu, 2008; Li and Wang, 2008; Gao and Ma, 2010b; Ammari et al., 2010).

For non-ellipsoidal polyhedral inclusions, Rodin (1996) provided an algorithmic analytical solution and showed that
Eshelby’s tensor cannot be constant inside a polyhedral inclusion, thereby proving the Eshelby conjecture in the case of
polyhedral inclusions. The expressions of Eshelby’s tensor for two-dimensional (2-D) polygonal inclusions were included
in Rodin (1996). The explicit expressions of the Eshelby tensor for three-dimensional (3-D) polyhedral inclusions were
later derived by Nozaki and Taya (2001), where an exact solution for the stress field inside and outside an arbitrary-shape
polyhedral inclusion was obtained and numerical results for five regular polyhedral inclusion shapes and three other
shapes of the icosidodeca family were presented. Both Rodin (1996) and Nozaki and Taya (2001) made use of an algorithm
developed by Waldvogel (1979) for evaluating the Newtonian (harmonic) potential over a polyhedral body. A more
compact form of the Eshelby tensor than that presented in Nozaki and Taya (2001) for a polyhedral inclusion in an infinite
elastic space was proposed by Kuvshinov (2008) using a coordinate-invariant formulation, where problems of polyhedral
inclusions in an elastic half-space and bi-materials were also investigated. In addition, specific analytical solutions have
been obtained for polyhedral inclusions of simple shapes such as cuboids (e.g., Chiu, 1977; Lee and Johnson, 1978; Liu and
Wang, 2005) and pyramids (e.g., Pearson and Faux, 2000; Glas, 2001; Nenashev and Dvurechenskil, 2010). Also, illustrative
results have been provided for dynamic Eshelby problems of cubic and triangularly prismatic inclusions along with
spherical and ellipsoidal ones by Wang et al. (2005) using their general solution for the dynamic Eshelby problem for
inclusions of various shapes.

However, these existing studies on polyhedral inclusion problems are all based on the classical elasticity theory, which does
not contain any material length scale parameter. As a result, the Eshelby tensors obtained in these studies and the subsequent
homogenization methods cannot capture the inclusion (particle) size effect on elastic properties exhibited by particle-matrix
composites (e.g., Vollenberg and Heikens, 1989; Cho et al., 2006; Marcadon et al., 2007). Solutions for polyhedral inclusion
problems are also important for describing interpenetrating phase composites reinforced by 3-D networks (e.g., Poniznik et al.,
2008; Jhaver and Tippur, 2009) and for understanding semiconductor materials buried with quantum dots that are typically
polyhedral-shaped (e.g., Kuvshinov, 2008; Nenashev and Dvurechenskil, 2010). These materials often exhibit microstructure-
dependent size effects whose interpretation requires the use of higher-order continuum theories.

In this paper, the Eshelby-type inclusion problem of a polyhedral inclusion prescribed with a uniform eigenstrain and a
uniform eigenstrain gradient and embedded in an infinite homogeneous isotropic elastic material is solved using a
simplified strain gradient elasticity theory (SSGET) (e.g., Gao and Park, 2007), which contains a material length scale
parameter and can describe size-dependent elastic deformations. The Eshelby tensor is analytically obtained in terms of
three potential functions, two of which are the same as the ones involved in the counterpart Eshelby tensor based on
classical elasticity. These potential functions, as three volume integrals over the polyhedral inclusion, are evaluated by
dividing the polyhedral inclusion domain into tetrahedral duplexes. Each duplex and the associated local coordinate
system are constructed using a procedure similar to that developed by Rodin (1996) based on the algorithm proposed in
Waldvogel (1979). Each of the three volume integrals is first transformed to a surface integral by applying the divergence
theorem, which is then transformed to a contour (line) integral based on Stokes’ theorem and using an inverse approach
different from those employed in the existing studies for evaluating the two integrals involved in the classical elasticity-
based Eshelby tensor for a polyhedral inclusion.

The rest of this paper is organized as follows. In Section 2, the general form of the Eshelby tensor for a 3-D arbitrary-
shape inclusion based on the SSGET is presented in terms of three potential functions (volume integrals). The expressions
of the SSGET-based Eshelby tensor for a polyhedral inclusion of arbitrary shape are analytically derived in Section 3, which
is separated into a classical part and a gradient part. The averaged Eshelby tensor over the inclusion volume is also
analytically evaluated there. Numerical results are provided in Section 4 to quantitatively illustrate the position and
inclusion size dependence of the newly obtained Eshelby tensor for the polyhedral inclusion problem. The paper concludes
in Section 5.

2. Eshelby tensor based on the SSGET

The SSGET is the simplest strain gradient elasticity theory evolving from Mindlin’s pioneering work. It is also known as
the first gradient elasticity theory of Helmholtz type and the dipolar gradient elasticity theory (e.g., Gao and Ma, 2010a).
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According to the SSGET (Gao and Park, 2007; Gao and Ma, 2010a), the Navier-like displacement equations of equilibrium are
given by

(Aot I+ p e — L[+ pOU; j + ] g +F; = 0 in Q, (1)
and the boundary conditions have the form:

oijnj—(uijknk)'j+(/1ijknknl)’lnj = Ei or u; =1;
on aQ, @

_ e
Ml = q; OF Uy = 31

where A and p are the Lamé constants in classical elasticity, L is a material length scale parameter, u; are the components of the
displacement vector, f; are the components of the body force vector (force per unit volume), g;; are the components of the total
stress, 6 =0;€,€;, L are the components of the double stress, p=u;e;®ejQey, and t; and g; are, respectively, the components
of the Cauchy traction vector and double stress traction vector. Also, in Eqs. (1) and (2), Q is the region occupied by the
elastically deformed material, 62, is the smooth bounding surface of Q, n; is the outward unit normal vector on 02, and the
overhead bar represents the prescribed value. In addition,

Hije = LTk = Wi 5 = Ty— My = Tj—L> T = i 3
where 7; are the components of the Cauchy stress, T=1;e;®e;.

When the strain gradient effect is not considered (i.e., L=0), u;;x»=0 and o;;=1; (see Eq. (3)), and Eqgs. (1) and (2) reduce
to the governing equations and the boundary conditions in terms of displacement in classical elasticity (e.g., Timoshenko
and Goodier, 1970; Gao and Rowlands, 2000).

Note that the standard index notation, together with the Einstein summation convention, is used in Egs. (1), (2) and (3)
and throughout this paper, with each Latin index (subscript) ranging from 1 to 3 unless otherwise stated.

Solving Eq. (1), subject to the boundary conditions of u; and their first, second and third derivatives vanishing at infinity,
gives the fundamental solution and Green’s function based on the SSGET. By using 3-D Fourier and inverse Fourier
transforms, the fundamental solution of Eq. (1) has been obtained as (Gao and Ma, 2009)

uoo= [f :Q Gyx—y)f;W)dy, 4)

where X is the position vector of a point in the infinite 3-D space, y is the integration point, and Gy( - ) is Green’s function
(a second-order tensor) given by
G,-]-(X) =

1
m [A(X)éij*B(X),ij]- (5)

with

2 2
2L 2% e L, (6)

— 1 —x/L —
A(x)=4(1fv)§(1fe ) BOo =X+
When L=0, Egs. (5) and (6) reduce to the Green’s function for 3-D problems in classical elasticity (e.g., Li and Wang, 2008). In Egs.
(5) and (6), v is Poisson’s ratio, which is related to the Lamé constants A and u through (e.g., Timoshenko and Goodier, 1970)
Ev E
A= , u= ,
(1+v)(1-2v) 2(1+v)

Q)

where E is Young’s modulus.

By using the Green’s function method entailing Egs. (4), (5) and (6), the general expressions of the Eshelby tensor based
on the SSGET can then be obtained, as summarized below.

Consider the problem of a 3-D inclusion of arbitrary shape embedded in an infinite homogenous isotropic elastic body.
The inclusion is prescribed with a uniform eigenstrain £* and a uniform eigenstrain gradient k™. There is no body force or
any other external force acting on the elastic body. The disturbed strain, ¢;, induced by £* and k* can be shown to be (Gao
and Ma, 2009, 2010b)

&j = Sijta&a + Tijkam ¥ m» ®
where Sy is the fourth-order Eshelby tensor having 36 independent components, and Tjjun, is a fifth-order Eshelby-like

tensor with 108 independent components. Eq. (8) shows that € (=¢;e;®e;) is solely linked to €* in the absence of k™ (i.e.,
the classical case) and is fully related to k* when €*=0. The fourth-order Eshelby tensor has been obtained as

Siikt = S§ia +Siis 9a)
1
Siu = Sri-v) [D jjtr—2V A 0k —(1—=V)(A 0k + A ki0it + A0k + A ki), (9b)

1 .
5514 = m[zvr,ij(SkH‘G_U)(rjl(silc+F,ilfsjk"‘Fjl<()il+F,ikfsjl)+2L2(A,ijk1_r,ijk1)]v 90
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where Sg,d is the classical part, Sg,d is the gradient part, ¢; is the Kronecker delta, and

D(x) = /Q |x—y/|dy, (10a)
1

Ax) = [ ——dy, 10b

0= [ ey (10b)
e—|x-yl/L

reo=[ ¢ —"a 10

0= [ sy (100)

are three scalar-valued potential functions that can be obtained analytically or numerically by evaluating the volume
integrals over the domain Q occupied by the inclusion, with |x| =x=(xx)"? and y (e Q) being the integration variable.
Note that the first two potential functions given in Egs. (10a) and (10b) are the same as the ones involved in the Eshelby
tensor based on classical elasticity (e.g., Mura, 1987; Nemat-Nasser and Hori, 1999; Li and Wang, 2008), whereas the third
one defined in Eq. (10c) results from the use of the SSGET. It should be mentioned that &(x) in Eq. (10a) and A(X) in
Eq. (10b) are, respectively, known to be a biharmonic potential and a Newtonian potential (e.g., Li and Wang, 2008), while
a variant of I'(x) in Eq. (10c) is called the Yukawa potential in physics (e.g., Rowlinson, 1989).

Egs. (10a), (10b) and (10c) show that among the three potential functions, only the third one, I'(x), involves the length
scale parameter L. It then follows from Eqs. (9c), (10b) and (10c) that Sg,d depends on L, while Sgk,, expressed in terms of
A(x) and @(x) only according to Egs. (9b), (10a) and (10b), is independent of L. Also, it is seen from Egs. (9c), (10b) and
(10c) that sgk,zo when L=0 (and thus I'(x)=0), thereby giving S, = Sgk, (from Eq. (9a)). That is, the Eshelby tensor derived
using the SSGET reduces to that based on classical elasticity when the strain gradient effect is not considered.

The fifth-order Eshelby-like tensor T, which relates the eigenstrain gradient k™ to the disturbed strain € in the elastic
body (see Eq. (8)), can be shown to be

2

Tijkim = Sn(i-v) RVY jjmO+ A=Y imidjk+ P imiSik+ ¥ kmiji+ ¥ kmidi)—11 jjiim], 1n

where
YX)=A-T, X)) =P+2[*(A-D), (12a,b)

with the scalar-valued potential functions @(x), A(x) and I'(x) defined in Eqgs. (10a), (10b) and (10c). It is clear from
Eq. (11) that T vanishes when L=0. Then, with S;; = Sgk, as discussed above, Eq. (8) simply becomes ¢; = Sgk,sz, when L=0,
which is the defining relation for the Eshelby tensor based on classical elasticity (Eshelby, 1957), as expected.

Egs. (9a), (9b), (9¢) and (11) provide the general formulas for determining S;ji; (= Sgkl +Sgk,) and Tjjm for an inclusion of
arbitrary shape in terms of the potential functions A(x), @(x) and I'(x) defined in Eqgs. (10a), (10b) and (10c). For the cases
of a spherical inclusion, a cylindrical inclusion and an ellipsoidal inclusion in an infinite elastic medium, analytical
expressions have been obtained for A(x), #(x) and I'(x) and thus for the Eshelby tensor (Gao and Ma, 2009, 2010b; Ma and
Gao, 2010). The more complex case of a polyhedral inclusion of arbitrary shape, for which A(x), ®(x) and I'(x) are difficult
to evaluate analytically, is examined in this study.

3. Polyhedral inclusion

The problem of an arbitrary-shape polyhedral inclusion in an infinite elastic body has been analytically studied by Rodin
(1996), Nozaki and Taya (2001) and Kuvshinov (2008) using classical elasticity. The Eshelby tensor for this problem is derived
here using the SSGET-based general formulas and a new method for evaluating the potential functions A(x), ¢(x) and I'(X).

3.1. Eshelby tensor

Consider an arbitrarily shaped polyhedral inclusion embedded in an infinite homogeneous isotropic elastic material.
The polyhedral inclusion has p faces and is prescribed with a uniform eigenstrain €* and a uniform eigenstrain gradient k*.

The p-faced polyhedral domain occupied by the inclusion can be divided into tetrahedral duplexes originated from a chosen
(arbitrary) point x (Waldvogel, 1979; Rodin, 1996). Each duplex can be further divided into two simplexes, each of which is a
tetrahedron with three of its four faces being right triangles (see Fig. 1). The four vertices of each of the duplexes are, respectively,
the projection point of X on a polyhedral surface (i.e., X;), two adjacent vertices on this surface (i.e., Vj,“ and V};), and the point x
itself. For each of these duplexes, a local Cartesian coordinate system is constructed, with point X being set as the origin. The three
orthogonal axes of the local coordinate system are denoted by 4, # and , respectively. The coordinates of the two vertices
Vf,’ and Vj; on the jth edge of the Ith surface are, respectively, given by (by, lﬁ ,ap) and (by,l;,ap), as shown in Fig. 2.

In Fig. 2, kﬁ. nﬁ and C? are the unit vectors associated with the local coordinates Ay, #;; and {;, y is an arbitrary point on
the Jth edge of the Ith surface, r is the position vector of y relative to the origin X (i.e., r=y—X), and 1§ is the projection of
r on the Ith surface. The usual Cartesian coordinates (x;, X», x3) are used in the global coordinate system having (e, e,, €3)
as the associated base vectors.
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Fig. 1. A polyhedron represented by duplexes: (a) a polyhedron (with five duplexes shown); (b) a duplex and the associated local coordinate system
constructed from an arbitrary point x.

Fig. 2. A duplex with its base on the Ith surface and one local coordinate axis (7) along the Jth edge of the Ith surface.

To obtain the Eshelby tensor for the polyhedral inclusion using Eqgs. (9a), (9b) and (9c), the three potential functions
&(x), A(x) and I'(x) defined in Egs. (10a), (10b) and (10c) are first evaluated over the polyhedral domain Q2 using an
approach different from those employed in Rodin (1996), Nozaki and Taya (2001) and Kuvshinov (2008) for evaluating
@(x) and A(x) involved in the classical elasticity-based Eshelby tensor, as shown next.

For a sufficiently smooth function M(x—y), the use of the divergence theorem gives

= [ maven =[] Savey) =~ ,i @[], masw )

where p is the number of surfaces of the polyhedron, and (C?)k is the kth component of the unit outward normal vector on
the Ith surface 09, C?.
To transform the surface integral in Eq. (13) to a contour (line) integral, let

M=(V xm)-g, (14)

where m is a yet-unknown vector located on the Ith surface of the polyhedron, and V x m denotes the curl of m. Using the
Stokes theorem then yields, upon applying Eq. (14),

//ml MdS(y) = é; | /C ﬂm~nﬁdl, s

where n]", is the unit vector along the Jth boundary edge Cj; of the Ith surface.
Now, write

m=dxﬁgﬂ. (16)

S
T
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determined. Substituting Eq. (16) into Eq. (15) leads to

i (=|r|) yet to be
q
I mdsw) = >y [ £Da
oQ Jj=1

G T7

where r§(= /r2—a? = |rj|) is the length of the projection of r on the Ith surface, and g(r) is a function of r

17)
where by =13 A, is the distance from point X, (the projection of point x on the Ith surface) to the Jth edge Cj (see Fig. 2). For
each specific function M, a different expression of g(r) and thus m can be determined, as shown next for the three cases

representing the integrands of the potential functions &(x), A(x) and I'(x) defined in Egs. (10a), (10b) and (10c)
For M=r=|y—x| (corresponding to &(x)), Egs. (14) and (16) gives

ry r
r=g(r)< ) +IVen)l- %
I

(18)
where V is the gradlent operator, and use has been made of the identity: a xb x c=(a-c)b—(a-b)c, with a, b, ¢ being
arbitrary vectors and “ x ”, “-” representing the cross, dot products, respectively. After carrying out the differentiation and
dot product operations Eq. (18) can be further simplified to

_8n
19
o +g'(r ) (19)
where g'(=dg/dr) is the first derivative of g with respect to r. The solution of Eq. (19) reads
r’—a}
8o = 35

(20)
with M=r.

where g; (=r-{)) is the distance from point x to the Ith surface (see Fig. 2), and g4(r) denotes the function g(r) for the case
Similarly, it can be shown that

s
ga(n) =

r+a,

(21)
when M=1/r=1/|y—x| (corresponding to A(x)), and
L e—a,/L_e—r/L
gr(n= 7( r\[g )
when M =e~

(22)
corresponding to I'(x)).
Using Eqgs. (13), (17), (20), (21) and (22) in Eqgs. (10a), (10b) and (10c) then leads to, with the local coordinate axis »
being along the Jth edge,

——iﬁq:(c b]l/” (@ +bji+1*)**—a
i

=1j=1

m (23
b 3(bjl+’72)
zp:zq: by [ ! d 24
by [ . 24)
== i@ +bj+n2+a

I sz

q 0 L Le” a/l_e=V/ az+bjl+’72/1-
Z & )ibjl/

b

5 dn, (25)
b +1n?

where [; and [; are, respectively, the coordinates of the two vertices Vf,r and Vj; on the jth edge, with [ being positive and
I negative (see Fig. 2).

The integrals in Eqs. (23) and (24) can be exactly evaluated by direct integration to obtain the following closed-form
expressions:

L ¢ bibn /5 s 1 aly
@Vi:—zz % & a?+bj;+(; >+ - tan™!
i=1/=

b]]\/a,z—l—bjz,-‘r(lﬁ)z
_ﬁtanf1 <£> + 3atby+b In ity at +by+ i
3 by 6 Vai+bj;
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— — — — 2 —\2
_l]Ib]l az+b2+(lf)2—£tan’] all]] +@ an’] ljil _3(112b”+b]3, In l_]I+\/a12+b]l+(lj1)
6 I ] s 3 2 2 —\2 3 bﬂ 6 2 2
byv/af +by 4+ \/a?+bj
q p q
==Y > @i? =-> > @il@H @]y, (26)
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Note that e~""" can be written as a power series:
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Using Eq. (29) in Eq. (25) then leads to

N0 —ayL (U L
I“,,-_—ZZ((,,)iL{e tan™! by —tan <b—”)

AH* =atan™!

(A~ =atan!

I=1j=1
n+11+rg2 1 p2 11 n/2 172 —n/2 I+)2 )2
+Z( 1n>' i [af + ,;+(,,)] {u (Z,nz} F, {,”,1,3, (2,,) '(,,2>]
o Lt a7 af +by, 2027720 a4by by
= (=) Iy [a} +bji+ (1)1 (n% 1 n.3 G?  @?
=2 b T+ 57 Fl 5y by o
=0 =T ! af +bj; ai+by - by
NS (0 JI abar: JI JI
== @ == 30> @ah =, 30

i=1j=1 =1j=1



268 X.-L. Gao, M.Q. Liu / . Mech. Phys. Solids 60 (2012) 261-276

where 1!, (I’))* and (1))~ are functions defined by
I =rlanbl G = @D @b H—@) ™ @.by. ),
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and F, is the first Appell hypergeometric function of two variables given by
o~ @iy (D) (0)
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1( Y) m,nZ:o it XY 32)

with (f), being the Pochhammer symbol representing the following rising factorial:

T'(f+m)
(f)m = F(f)

Note that Egs. (26), (27) and (30) are applicable to both the interior case with x being inside the polyhedral inclusion
(i.e.,, xe Q) and the exterior case with x being outside the inclusion (i.e., x¢ Q2). For the former q; is a positive value, while for
the latter g, is a negative value. The similarity and difference identified here between the interior and exterior cases can be
seen from Fig. 3, where how the duplex in each case is constructed is schematically shown.

It should be mentioned that no attempt is made here to obtain the expressions of the potential functions &(x), A(x) and
I'(x) from Eqgs. (26), (27) and (30), since only the second and/or fourth derivatives of these functions are involved in the
general expressions of the Eshelby tensor given in Egs. (9a), (9b) and (9c).

Note that for a smooth function F(x) = F(a,,b],,lﬁ,l]’,) = F+(a,,b],,lf,r)—F‘(a,,bﬂ.lj,) the use of chain rule gives

oF _ oFoa; = oF oby , oF*oly oF al;

=ff+D(f+2)---(f+m-1). (33)

N T daran Tty ax T ax oy 39
where the parameters aj, by, If,’ l]‘, are related to x through

ar =y —x ) (35a)

by =/ —Xk)(;tj‘l)k, (35b)

I =W =X (350)
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+
l]l

0
Tl JI
0

A’.II

Fig. 3. Duplex and parameters a;, by, lﬁ I for (a) xeQ and (b) x¢ Q.
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I = W =X (35d)
where Xy, vk and v;, are, respectively, the coordinates of the pomts X, V], and Vj; in the global coordinate system, and (C, Vs
()»],)k and (171,),c are the components of the unit base vectors Q, XJ, and nj, in the global coordinate system.

It then follows from Eqgs. (34), (35a), (35b), (35c) and (35d) that

Fim =G5 @1)"<az—+‘aT, iy (36a)
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Using Egs. (26), (27), (30), (36a) and (36b) in Egs. (9b) and (9c¢) will lead to the final expressions of the Eshelby tensor
for the p-faced polyhedral inclusion as
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and

S = Sm U)Z Z{(SG),,(C?) (D0 + SO+ CDUED NI+ SHIEDRCT S0+ EEDy04]

J=1I=
+(SG)]I((:I)(Ajl)jékl"_(SS)]l[(éI)(/“]I)k jl+(Cl)(;]l)l 1k]+(5 )]I[Mﬂ)k(Cl )i zl+(/1]1)l(41)]5:k]
+(S )]I(Cl)(ﬂjl)ﬁkl"‘(s )]1[(C1)(7711)k ]I+(Cl)(n]l)l 1k]+(sg)]1[(’7]1)k@1 )j :l+(”l]1)l(C1 )iik]
ST+ EDRED AR+ RN+ ST ADICORE N
F DI+ DD+ SR A+ D O+ CO D ]
ST AR+ ORI+ D DD+ ST D
DDA+ D DA+ Sl DD A+ COAD A+ D A
ST A+ DD+ COD DD+ DDy
F DR+ CD O Gl (370)
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In Egs. (37b) and (37d), &}, (@) *, (@)=, A, (AH*, (A, ], ())* and (1))~ are defined in Egs. (28) and (31).

It should be mentioned that the classical part S,]kl in Egs. (37a) and (37b) depends only on Poisson’s ratio v and cannot
account for the inclusion size effect, noting that @/, (®)*, (@), A%, (#])* and (4})~ involved in Eq. (37b) do not contain
the material length scale parameter L (see Eq. (28)). However, the gradient part Suk, in Egs. (37c) and (37d) can capture the
inclusion size effect, since Eqs. (37c) and (37d) as well as the expressions of Fjll. (Ffll)+and (Fjll) (see Eq. (31)) contain the
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parameter L in addition to Poisson’s ratio v. Clearly, when L=0 (i.e., in the absence of the strain gradient effect), S,]k, =0

according to Egs. (37¢), (37d) and (31), thereby resulting in S = Sij,d from Eq. (9a). That is, the SSGET-based Eshelby tensor
reduces to its counterpart based on classical elasticity when the strain gradient effect is not considered. Also, it is seen that
the expressions of the classical elasticity-based Eshelby tensor in Egs. (37a), (37b) and (28) derived here are more compact
than those given in Nozaki and Taya (2001).

The expressions of the Eshelby tensor Sj;, in Egs. (9a), (37a), (37b), (37c) and (37d) are derived for a p-faced polyhedral
inclusion of arbitrary shape. For simple-shape inclusions, more explicit expressions can be obtained for S.

3.2. Averaged Eshelby tensor

The volume average of the position-dependent Eshelby tensor, S;y, is given by

Skt = o~ Z /// (Snm)g(an byl Ldv, (38)

VQM —11=

where (Sym)jjki is the Eshelby tensor at point X inside Qyy presented in Egs. (9a), (37a), (37b), (37c) and (37d), Vg, is the
volume of the polyhedral inclusion 2, Quy is the region occupied by the duplex formed by the origin (point O) of the global
coordinate system, the projection of point O onto the Mth polygonal surface (i.e., Oy) and two vertices on the Nth edge of
the Mth surface (i.e., V;, and Vy,,), and n is the number of edges on the Mth surface. Note that this duplex Quy is different
from that formed by point X, its projection onto the Ith polygonal surface (i.e., X;) and two vertices on the Jth edge of the Ith
surface (i.e., Vﬁ and Vj;), as shown in Fig. 4.

For the NMth duplex Qy,, originated from point O, the local Cartesian coordinate system (Ann, #nm, (n) can be chosen in a
way similar to what was done earlier (see Fig. 2). Then, the coordinates of the vertices of the duplex ©;; on the jth edge of the Ith
surface and of an arbitrary point x within the NMth duplex Quy, in the (Annv, #nmvs (um) local coordinate system can be identified

as (VN NV NV (@ INVE NV N and (M, MM, XENM), respectively. Also, the base vectors )}, 1) and &
of the local coordinate system attached to the duplex €, originated at X can be expressed in terms of the base vectors k%M, LY
and QOM. It then follows that the parameters for the duplex € can be determined as

ap = WM MM = @M XM DM, (39a)

by = W™ = MDY = @M MDA, (39D)

Fig. 4. Duplexes and the corresponding local coordinate systems constructed from an arbitrary point x and from the origin O of the global coordinate
system, respectively.
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INM INM
L = @™ MMM, (39¢)

Iy = W™ =M @HM, (39d)

where (™, (7)™ and (()f™ represent, respectively, the kth components of the unit vectors Aj), 1} and & in the local

coordinate system (Znn, v, (v) With the base vectors X,Q,M, ndy and (;,c\’,,.
Using Eqgs. (39a), (39b), (39¢) and (39d) in Eq. (38) yields

p n p q
Sija = VLQMX% NX:] IZ:UX; //QNM(SNM)ijkl[al(;LNM-ﬂNm-CM)- by Gt M &) Gt Gonnas Mg Enn)s iy o Mg Ea)1d A dtgpg dg. (40)
This general formula can be used for a polyhedral inclusion of arbitrary shape.

For a polyhedral inclusion that is symmetric about the global coordinate axes xi, x, and x3, only one eighth of the
inclusion needs to be considered and the global coordinate system can be used in all computations. The one-eighth
polyhedral domain can be divided into several sub-polyhedra with their top and bottom surfaces parallel to the x;x,-plane,
and the volume integral over each sub-domain can be evaluated by direct integration using the global coordinate system.
Also, only the global coordinates of all vertices need to be determined, and the unit vectors xj",, n}), and Q? in the local
coordinate system can be expressed in terms of the base vectors (i.e., e;, e, €3) in the global coordinate system. As a result,
Eq. (40) can be simplified to

I SR I B .
Sijkl = V_Q'IZl IZUZ]// QT(ST)ijkl[aI(xl ,X2,X3), bji(x1,x2,X3), lff (X1,X2,X3), [y (x1,X2,X3)]dX1 dX2dx3, (41)

where ¢ is the number of sub-polyhedra in the one eighth of the polyhedral inclusion, and (Sr); is the Eshelby tensor at
point x inside Qr given in Eqgs. (9a), (37a), (37b), (37¢) and (37d).

4. Numerical results

To illustrate the general formulas of the Eshelby tensor for a p-faced polyhedral inclusion of arbitrary shape derived in
Section 3, three types of polyhedral inclusions (i.e., cubic, octahedral and tetrakaidecahedral) shown in Fig. 5 are
quantitatively studied in this section. Cuboids are the first polyhedral inclusions investigated using classical elasticity (e.g.,
Chiu, 1977; Lee and Johnson, 1978; Liu and Wang, 2005). A tetrakaidecahedron can be generated by uniformly truncating
the six corners of an octahedron and is known to be the only polyhedron that can pack with identical units to fill space and
nearly minimize the surface energy (e.g., Li et al., 2003). Tetrakaidecahedral cells have been frequently used to represent
foamed materials and interpenetrating phase composites (e.g., Li et al., 2003, 2006; Jhaver and Tippur, 2009).

Two components, S;117 and S;212, of the Eshelby tensor at any point x inside each polyhedral inclusion with various
sizes are evaluated using Egs. (9a), (37a), (37b), (37c), (37d), (28) and (31) and plotted to demonstrate how the
components change with the position and inclusion size. Also, how the average Eshelby tensor component S;1q; varies
with the inclusion size is presented here, which is computed using Eq. (41). For illustration purposes, Poisson’s ratio v is
taken to be 0.3 and the material length scale parameter L to be 17.6 um in the current numerical analysis, as was done
earlier (Gao and Ma, 2009, 2010a,b; Ma and Gao, 2010, 2011).

The distributions of S;;1 for the cubic, octahedral, and tetrakaidecahedral inclusions along the x; axis predicted by the
current model are shown in Figs. 6-8, where the values of S¢,,, are also displayed for comparison.

It can be seen from Figs. 6-8 that the classical part S7,;; (based on classical elasticity) varies with the position of x
within each polyhedral inclusion rather than uniform, which shows that the Eshelby conjecture is true for the three
polyhedral inclusion shapes considered here. Also, it is found that for each of the three inclusion shapes Sfm at a given
value of x;/R is the same for all values of R/L, confirming the inclusion size-independence of the classical part of the
Eshelby tensor, which is noted near the end of Section 3.1. In addition, for all three polyhedral inclusion shapes considered,
it is observed from Figs. 6-8 that when the characteristic inclusion size R (see Fig. 5) is small (compared to the length scale

a

>

X3 b ?x3 C

s R e
I\
\

2R

Fig. 5. Three types of polyhedral inclusions: (a) cubic, (b) octahedral and (c) tetrakaidecahedral.
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Fig. 6. Variation of Sy, along the x; axis inside the cubic inclusion: (a) R=2L, (b) R=4L and (c) R=6L, with R being half of the edge length (see Fig. 5(a)).
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Fig. 7. Variation of S;;11 along the x; axis inside the octahedral inclusion: (a) R=2L, (b) R=4L and (c) R=6L, with R being half of the edge length
(see Fig. 5(b)).
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Fig. 8. Variation of S;111 along the x; axis inside the tetrakaidecahedral inclusion: (a) R=2L, (b) R=4L and (c) R=6L, with R being half of the cell height

(see Fig. 5(c)).
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Fig. 9. Variation of S;,1, along the x; axis inside the cubic inclusion: (a) R=2L, (b) R=4L and (c) R=6L, with R being half of the edge length (see Fig. 5(a)).

parameter L, e.g., R/L=2), the strain gradient part S,,,, which is the difference between Sy11; and S$;; (i.e., $$;;; =
S1111 —Sfm )and is displayed as the vertical distance between the Slc111 curve and each S;1; curve in Figs. 6-8, is significant
and should not be neglected. However, as the inclusion size becomes larger, the values of S;;1; are all getting closer to
those of S§,,,. This means that the inclusion size effect is less significant and may be ignored for large inclusions in some
cases, which agrees with the general trend observed experimentally (e.g., Cho et al., 2006).

The change of S;,1> with the position and inclusion size is illustrated in Figs. 9-12 together with a comparison with
S%,,, for the three types of polyhedral inclusions. Clearly, S$,,, varies with the position of x inside each polyhedral
inclusion, which differs from that in an ellipsoidal inclusion and supports the Eshelby conjecture. But the classical part
SS,,, at a given value of x;/R remains the same for all inclusion sizes, as expected from the discussion in Section 3.1.
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Fig. 10. Variation of S;,1, along the x; axis inside the octahedral inclusion: (a) R=2L, (b) R=4L and (c) R=6L, with R being half of the edge length (see
Fig. 5(b)).
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Fig. 11. Variation of S1»1> along the x; axis inside the tetrakaidecahedral inclusion: (a) R=2L, (b) R=4L and (c) R=6L, with R being half of the cell height
(see Fig. 5(c)).

The gradient part S%,,,, as the difference between Sy, and S%,,, (i.e., %1, = S1212—5%,1,), is seen to be significantly large
for small inclusions (e.g., R/L=2) and becomes insignificant for large inclusions for all three types of polyhedral inclusions.
More specifically, it is observed from Fig. 9 that for the cubic inclusion the strain gradient effect, as measured by the value
of $%,,,, is large for all inclusion sizes when x;/R> 0.6. For the octahedral inclusion, the strain gradient effect is
insignificant and can be neglected when R/L > 4, as illustrated in Fig. 10. For the tetrakaidecahedral inclusion, Fig. 11 shows
that the strain gradient effect is also small, especially in the region away from the square faces.

The component Sq111 of the averaged Eshelby tensor varying with the inclusion size is shown in Fig. 12 for the three
inclusion shapes, where Sy, is also displayed for comparison. The values of S111; shown in Fig. 12 are obtained using Eqs.
(41) and (39a), (39b), (39c) and (39d), which are also applied to get the values of 51111 with L—0.

It can be seen from Fig. 12 that for each polyhedral inclusion Sfm (based on classical elasticity) is a constant

independent of the inclusion size R. However, S111; predicted by the current model based on the strain gradient elasticity
theory does vary with the inclusion size: the smaller the inclusion, the smaller the Eshelby tensor component. In

particular, when the inclusion is small, the strain gradient effect, as measured by §fm( =Sun —§fm), is significantly large

and should not be ignored. As the inclusion becomes large, S111; approaches §]Cm from below, indicating that the strain
gradient effect gets small and may be neglected for very large inclusions.

The observations made here are also true for the other components of the Eshelby tensor S, in Egs. (9a), (37a), (37b),
(37¢), (37d), (28) and (31) and its volume average Sy in Eq. (41).

From the numerical results presented above, it is clear that the newly obtained Eshelby tensor based on the SSGET can
capture the inclusion size effect at the micron scale, while the Eshelby tensor based on classical elasticity does not have
this capability.

5. Conclusions

An analytical solution is provided for the Eshelby-type problem of an arbitrarily shaped polyhedral inclusion embedded
in an infinite elastic matrix using a simplified strain gradient elasticity theory (SSGET) that contains one material length
scale parameter in addition to two classical elastic constants. The SSGET-based Eshelby tensor for a polyhedral inclusion of
arbitrary shape is analytically derived in a general form in terms of three potential functions, two of which are the same as
the ones involved in the Eshelby tensor based on classical elasticity. These potential functions, as three volume integrals
over the inclusion, are evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes. Each of the three
volume integrals is first transformed to a surface integral by applying the divergence theorem, which is then transformed
to a contour (line) integral based on Stokes’ theorem and using an inverse approach that differs from those employed in
the existing studies based on classical elasticity. The newly obtained Eshelby tensor is separated into a classical part and a
gradient part. The classical part depends only on Poisson’s ratio of the matrix material, while the gradient part depends on
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Fig. 12. Variation of S1;1; with the inclusion size: (a) cubic, (b) octahedral and (c) tetrakaidecahedral.

both Poisson’s ratio and the material length scale parameter that enables the explanation of the inclusion size effect. This
SSGET-based Eshelby tensor reduces to its counterpart based on classical elasticity when the strain gradient effect is not
considered. A general form of the volume averaged Eshelby tensor over the polyhedral inclusion is also obtained, which
can be used in homogenization analyses of composites containing polyhedral inclusions.

To demonstrate the newly derived Eshelby tensor, three types of polyhedral inclusions, cubic, octahedral and tetra-
kaidecahedral, are analyzed by directly applying the general formulas. The numerical results reveal that for each of the three
inclusion shapes the components of the new Eshelby tensor change with the position and inclusion size, whereas their classical
elasticity-based counterparts only vary with the position. When the inclusion is small, the gradient part is seen to contribute
significantly and should not be ignored. Also, it is found that the smaller the inclusion size is, the smaller the components of the
volume-averaged Eshelby tensor are. These components approach from below the values of their classical elasticity-based
counterparts as the inclusion size becomes large. Hence, the inclusion size effect may be neglected for large polyhedral
inclusions in some cases.
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